The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria.
نویسندگان
چکیده
Most transfer RNAs (tRNAs) can translate more than one synonymous codon, and most codons can be translated by more than one isoacceptor tRNA. The rates of translation of synonymous codons are dependent on the concentrations of the tRNAs and on the rates of pairing of each anticodon-codon combination. Translational selection causes a significant bias in codon frequencies in highly expressed genes in most bacteria. By comparing codon frequencies in high and low-expression genes, we determine which codons are preferred for each amino acid in a large sample of bacterial genomes. We relate this to the number of copies of each tRNA gene in each genome. In two-codon families, preferred codons have Watson-Crick pairs (GC and AU) between the third codon base and the wobble base of the anticodon rather than GU pairs. This suggests that these combinations are more rapidly recognized by the ribosome. In contrast, in four-codon families, preferred codons do not correspond to Watson-Crick rules. In some cases, a wobble-U tRNA can pair with all four codons. In these cases, A and U codons are preferred over G and C. This indicates that the nonstandard UU combination appears to be translated surprisingly well. Differences in modified bases at the wobble position of the anticodon appear to be responsible for the differences in behavior of tRNAs in two- and four-codon families. We discuss the way changes in the bases in the anticodon influence both the speed and the accuracy of translation. The number of tRNA gene copies and the strength of translational selection correlate with the growth rate of the organism, as we would expect if the primary cause of translational selection in bacteria is the requirement to optimize the speed of protein production.
منابع مشابه
Identification of Synonymous Codon Usage Bias in the Pseudorabies Virus UL31 Gene
Background: Little knowledge of synonymous codon usage pattern of pseudorabies virus (PRV) genome, especially the UL31 gene in the process for its evolution is available. Objectives: In the present study, the codon usage bias between PRV UL31 sequence and the UL31-like sequences was identified. Materials and Methods: We used a comprehensive analysi...
متن کاملCodon usage bias and tRNA over-expression in Buchnera aphidicola after aromatic amino acid nutritional stress on its host Acyrthosiphon pisum
Codon usage bias and relative abundances of tRNA isoacceptors were analysed in the obligate intracellular symbiotic bacterium, Buchnera aphidicola from the aphid Acyrthosiphon pisum, using a dedicated 35mer oligonucleotide microarray. Buchnera is archetypal of organisms living with minimal metabolic requirements and presents a reduced genome with high-evolutionary rate. Codonusage in Buchnera h...
متن کاملInfluence of Dielectric Constant on Codon-Anticodon pairing in mRNA and tRNA triplets by Theoretical Studies: Hartree-Fock and Density Functional Theory Calculations.
In this paper we have focused on the dielectric constant effect between various solvents with theoretical modelin the biochemical process. Thereby, AAA, UUU, AAG and UUC triplex sequences have been optimized inwater, methanol, ethanol and DMSO with proposed SCRF Model of theory. The solvation of biomolecules isimportant in molecular biology since numerous processes involve to interacting a prot...
متن کاملCodon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization.
The selection-mutation-drift theory of codon usage plays a major role in the theory of molecular evolution by explaining the co-evolution of codon usage bias and tRNA content in the framework of translation optimization. Because most studies have focused only on codon usage, we analyzed the tRNA gene pool of 102 bacterial species. We show that as minimal generation times get shorter, the genome...
متن کاملMutational Pressure Drives Evolution of Synonymous Codon Usage in Genetically Distinct Oenothera plastomes
Background: Most of the amino acids are encoded by more than one codon, termed as synonymous codons. Synonymous codon usage is not random as it is unique to species. In each amino acid family, some synonymous codons are preferred and this is referred to as synonymous codon usage bias (SCUB). Trends associated with evolution of SCUB and factors influencing its diversification in plastomes of gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 27 9 شماره
صفحات -
تاریخ انتشار 2010